If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x+0.5=0
a = 2; b = 3; c = +0.5;
Δ = b2-4ac
Δ = 32-4·2·0.5
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{5}}{2*2}=\frac{-3-\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{5}}{2*2}=\frac{-3+\sqrt{5}}{4} $
| 5.5=(40-x)/11 | | ((3x+4)/8))=((x+2)/3)) | | (3x+4/8)=(x+2/3) | | 4x^2-20x-225=0 | | 6x5280=31680 | | 3e=37 | | 3e=123 | | 2(x)^2-10x=12 | | (=10y)2 | | (X-1)+(1.1-y)=1.1 | | -4u-2=-2(u-8) | | x=70+50 | | 3x-8+117+125=360 | | x+8+65+78=180 | | 5-3(x-4)=8(x-4)=8x-32 | | x-7=3x+14 | | 31+x=2(8+x) | | (180/(x-4))-(180/x)=16 | | (3x+21)=(6) | | (41)+(3v)=5v-9 | | (t+49)+(37)=7t-10 | | (c-17)+(c)=c+40 | | (t+20)+(t+20)=t+50 | | (b-39)+(b)=b+43 | | (a-1)+(a)=a+49 | | 11x+3.5=90 | | (y-3)+(y)=y+38 | | (p-50)+(p)=p+37 | | p-50=p+73 | | u+1+u+11+u+41=180 | | p+19+4p+8p+18=180 | | 4z-4+6z-11+4z-15=180 |